On a posteriori error estimates

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On A Posteriori Error Estimates

Consider a sequence {xn}n—Q in a normed space X converging to some x* £ X. It is shown that the sequence satisfies a condition of the type ||x* -x„|| < oi||xn xn_¡\\ for some constant a and every n > 1, if the associated null sequence {e„}„=q, en = x* — xn, is uniformly decreasing in norm or if it is alternating with respect to any ordering whose cone of positive elements is acute.

متن کامل

A Posteriori Error Estimates 3

This paper presents a posteriori error estimates for the hp{version of the boundary element method. We discuss two rst kind integral operator equations , namely Symm's integral equation and the integral equation with a hypersingular operator. The computable upper error bounds indicate an algorithm for the automatic hp{adaptive mesh{reenement. The eeciency of this method is shown by numerical ex...

متن کامل

A posteriori error estimates for Maxwell equations

Maxwell equations are posed as variational boundary value problems in the function space H(curl) and are discretized by Nédélec finite elements. In Beck et al., 2000, a residual type a posteriori error estimator was proposed and analyzed under certain conditions onto the domain. In the present paper, we prove the reliability of that error estimator on Lipschitz domains. The key is to establish ...

متن کامل

A Note on Constant-Free A Posteriori Error Estimates

In this note we look at constant-free a posteriori error estimates from a different perspective. We show that they can be interpreted as an alternative way of expressing the residual of a finite element approximation and thus fit into the same framework as other a posteriori error estimates such as residual error indicators. Our approach also reveals that, when applied to singularly perturbed r...

متن کامل

A Posteriori Error Estimates Based on the Polynomial Preserving Recovery

Superconvergence of order O(h), for some ρ > 0, is established for the gradient recovered with the Polynomial Preserving Recovery (PPR) when the mesh is mildly structured. Consequently, the PPR-recovered gradient can be used in building an asymptotically exact a posteriori error estimator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1977

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1977-0426418-4